幂函数的教案5篇

时间:
Iraqis
分享
下载本文

大家在课堂中使用教案时,应该灵活应变,适时调整教学内容,优秀的教案需关注不同学习风格的学生,以提供个性化的学习支持,以下是找工作范文网小编精心为您推荐的幂函数的教案5篇,供大家参考。

幂函数的教案5篇

幂函数的教案篇1

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、创设问题的情境,激发学生的学习热情,导入课题

出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的p2图1—2)并回答:

1、观察图1-2,正方形a中有_______个小方格,即a的面积为______个单位。

正方形b中有_______个小方格,即a的面积为______个单位。

正方形c中有_______个小方格,即a的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、图1—2中,a,b,c之间的面积之间有什么关系?

学生交流后形成共识,教师板书,a+b=c,接着提出图1—1中的a.b,c的关系呢?

二、做一做

出示投影3(书中p3图1—4)提问:

1、图1—3中,a,b,c之间有什么关系?

2、图1—4中,a,b,c之间有什么关系?

3、从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的`款吗?那他指什么呢?

五、巩固练习

1、错例辨析:

△abc的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足=25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△abc并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△abc是直角三角形,第三边c也不一定是满足,题目中并为交待c是斜边

综上所述这个题目条件不足,第三边无法求得。

2、练习p7§1.11

六、作业

课本p7§1.12、3、4

幂函数的教案篇2

一、教学内容的分析

(一)地位与作用:

二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,面积问题与最大利润学生易于理解和接受,故而在这儿作专题讲座。目的在于让学生通过掌握求面积、利润最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积、利润最大、运动中的二次函数、综合应用三课时,本节是第一课时。

(二)学情及学法分析

对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

二、教学目标、重点、难点的确定

对于函数知识来说它是从生活中广泛的实际问题中抽象出来的数学知识,所以它是解决实际问题中被广泛应用的工具。这部分知识的学习无论对提高学生在生活中应用函数知识的意识,还是对掌握运用函数知识的方法,都具有重要意义。

而二次函数的知识是九年级数学学习的重要内容之一。同样它也是从生活实际问题中抽象出的知识,又是在解决实际问题时广泛应用的数学工具。课程标准强调学生的应用意识的培养,让学生面对实际问题时,能尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。

本节课是学生在学习了二次函数的概念、图像和性质后进一步学习二次函数的应用。学生有了一定的二次函数的知识,并且在前两节课已经接触到运用二次函数的知识解决函数的最值问题,而本节课需要利用建模的思想,将实际问题转化为二次函数的问题,从而使问题得到解决。建立二次函数关系对学生而言比较困难,尤其是关注实际问题中自变量的取值范围,需要学生经历分析、讨论、对比等过程,进而得出结论。本节课的问题均来自学生的日常生活,学生会感到很有兴趣,愿意去探究。但学生基础比较薄弱,对学习数学还是有一些畏难的情绪,因此需要教师进行适当引导、分散难点。

根据上述教学背景分析,特制订如下教学目标:

1.知识与技能:学会将实际问转化为数学问题;学会用二次函数的知识解决有关的实际问题.

2.过程与方法:经历实际问题转化成数学问题利用二次函数知识解决问题利用求解的结果解释问题的过程体会数学建模的思想,体会到数学来源于生活,又服务于生活。

3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。

利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题,就是本节课的教学重点;由于学生理解问题的能力和知识储备情况的不同,那么从现实问题中建立二次函数模型。就是本节课的一个难点。

新课程标准强调动手实践、自主探索与合作交流应该是学生学习数学的重要方式。教师应该是学生数学学习的组织者、引导者、合作者。同时,我认为教学方法与学习方法应该是相辅相成的不应该是割裂开来的,而且在一节课中教学方法和学习方法不可能是单一的而是多种方式方法并存的,因此根据本节课的内容和学生的实际情况,同时也为了突出本节课的重点并突破学习难点我确定本节课的教法与学法有启发法、探究法、试验法、课堂讨论法、练习法等。

三、教学方法与手段的选择

本节课我采用的是导学案的教法,

创设情境、引入问题------二人小组、复习回顾------自主探究、小组合作-------板演展示、别组纠错---------教师点评、总结归纳--------课堂测评

四、教学设计分析

首先创设问题情境,激发学生的学习兴趣。数学课程的内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、验证、推理与交流。而20世纪下半叶数学的一个最大进展是它的广泛应用,数学的价值观因此发生了深刻的变化。最直接的一个结论就是数学要重视应用意识和应用能力的培养。数学应用意识的孕育数学建模能力的培养联系学生的日常生活并解决相关的问题等方面的要求越来越处于突出的地位。所以我以养鸡场问题、商品销售利润问题为例,提出问题,引起学生的兴趣,同时也让学生切实体会到数学来源于生活。针对学生基础比较薄弱,解题能力较差的现状,我紧接着先给出几道关于二次函数的练习题,巩固二次函数最值的求法,为后面解决实际问题扫清障碍。

接下来就是解决最开始提出的商品何时利润最大问题,在解决商品利润问题时我先让学生做了几道关于利润的计算题,回忆一下有关利润的公式。

由于有了前面例子的认知基础,因此引导学生考虑能否利用二次函数的知识来解决,这时学生能想到要列出函数关系式。由于获得最大利润的方式有很两种,因此采用小组合作探究的方式分组讨论实施。这是为了给学生提供充分从事数学活动的机会,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。由于学生的基础比较薄弱,因此教师作为引导者与合作者参与到学生的讨论中。这里要给学生充分的时间进行探究。在各小组充分讨论后进行全班交流,归纳出全班哪种办法求解起来最简便,作出优劣的判断。接着由所得到的结论继续提出新问题,再次体会数学来源于生活又服务于生活。

最后是归纳总结、加深印象环节。在小结中,引导学生总结出从数学的角度解决实际问题的过程:有实际问题抽象转化成数学问题,然后运用所学的数学知识得到问题的解,再由结论反过来解释或解决新的实际问题。

最后是课堂测评。

对于作业的处理,针对学生的实际情况,作业分为必做题与选做题。对于基础比较薄弱的学生只需完成课堂中的巩固练习即可;对于学有余力的学生补充两道选做题。

以上就是我对本节课的设计。提出的问题都是学生亲身的经历的情境,学生能感受到数学来源于生活,又服务于生活。而且新课标也提出为学生提供的素材应该具有现实性和趣味性,要密切联系生活实际,让学生体会到数学在生活中的作用

幂函数的教案篇3

一、教学目标:

1、知识与技能

(1)理解指数函数的概念和意义;

(2)与的图象和性质;

(3)理解和掌握指数函数的图象和性质;

(4)指数函数底数a对图象的影响;

(5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小

(6)体会具体到一般数学讨论方式及数形结合的思想。

2、情感、态度、价值观

(1)让学生了解数学来自生活,数学又服务于生活的哲理。

(2)培养学生观察问题,分析问题的能力。

二、重、难点:

重点:

(1)指数函数的概念和性质及其应用。

(2)指数函数底数a对图象的影响。

(3)利用指数函数单调性熟练比较几个指数幂的大小。

难点:

(1)利用函数单调性比较指数幂的大小。

(2)指数函数性质的归纳,概括及其应用。

三、教法与教具:

①学法:观察法、讲授法及讨论法。

②教具:多媒体。

四、教学过程:

第一课时

讲授新课

指数函数的定义

一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为r。

提问:在下列的关系式中,哪些不是指数函数,为什么?

(1)(2)(3)

(4)(5)(6)

(7)(8)(>1,且)

小结:根据指数函数的定义来判断说明:因为>0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集r。

若t;0,如在实数范围内的函数值不存在。

若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。先来研究的情况。

下面我们通过用计算机完成以下表格,并且用计算机画出函数的图象。

再研究,0t;t;1的情况,用计算机完成以下表格并绘出函数的图象。

从图中我们看出。

通过图象看出实质是上的。

讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?

②利用电脑软件画出的函数图象。

练习p711,2

作业p76习题3-3a组2

课后反思:

幂函数的教案篇4

教学目标:

(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;

(2)培养学生的归纳、总结能力;

(3)通过两圆外公切线长的求法向学生渗透“转化”思想。

教学重点:

理解两圆相切长等有关概念,两圆外公切线的求法。

教学难点:

两圆外公切线和两圆外公切线长学生理解的不透,容易混淆。

教学活动设计

(一)实际问题(引入)

很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象。(这里是一种简单的数学建模,了解数学产生与实践)

两圆的公切线概念

1、概念:

教师引导学生自学。给出两圆的外公切线、内公切线以及公切线长的定义:

和两圆都相切的直线,叫做两圆的公切线。

(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线。

(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线。

(3)公切线的长:公切线上两个切点的距离叫做公切线的长。

2、理解概念:

(1)公切线的长与切线的长有何区别与联系?

(2)公切线的长与公切线又有何区别与联系?

(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长。但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点。

(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量。

(三)两圆的.位置与公切线条数的关系

组织学生观察、概念、概括,培养学生的学习能力。添写教材p143练习第2题表。

(四)应用、反思、总结

例1 、已知:⊙o 1 、⊙o 2的半径分别为2cm和7cm,圆心距o 1 o 2 =13cm,ab是⊙o 1 、⊙o 2的外公切线,切点分别是a、b。求:公切线的长ab。

分析:首先想到切线性质,故连结o 1 a、o 2 b,得直角梯形ao 1 o 2 b。一般要把它分解成一个直角三角形和一个矩形,再用其性质。(组织学生分析,教师点拨,规范步骤)

解:连结o 1 a、o 2 b,作o 1 a⊥ab,o 2 b⊥ab。

过o 1作o 1 c⊥o 2 b,垂足为c,则四边形o 1 abc为矩形,

于是有

o 1 c⊥c o 2,o 1 c= ab,o 1 a=cb。

在rt△o 2 co 1和。

o 1 o 2 =13,o 2 c= o 2 b- o 1 a=5

ab= o 1 c= (cm)。

反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法。

例2__ 、如图,已知⊙o 1 、⊙o 2外切于p,直线ab为两圆的公切线,a、b为切点,若pa=8cm,pb=6cm,求切线ab的长。

分析:因为线段ab是△apb的一条边,在△apb中,已知pa和pb的长,只需先证明△pab是直角三角形,然后再根据勾股定理,使问题得解。证△pab是直角三角形,只需证△apb中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过p作两圆的公切线cd如图,因为ab是两圆的公切线,所以∠cpb=∠abp,∠cpa=∠bap。因为∠bap+∠cpa+∠cpb+∠abp=180°,所以2∠cpa+2∠cpb=180°,所以∠cpa+∠cpb=90°,即∠apb=90°,故△apb是直角三角形,此题得解。

解:过点p作两圆的公切线cd

∵ ab是⊙o 1和⊙o 2的切线,a、b为切点

∴∠cpa=∠bap∠cpb=∠abp

又∵∠bap+∠cpa+∠cpb+∠abp=180°

∴ 2∠cpa+2∠cpb=180°

∴∠cpa+∠cpb=90°即∠apb=90°

在rt△apb中,ab 2 =ap 2 +bp 2

说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系。

(五)巩固练习

1、当两圆外离时,外公切线、圆心距、两半径之差一定组成()

(a)直角三角形(b)等腰三角形(c)等边三角形(d)以上答案都不对。

此题考察外公切线与外公切线长之间的差别,答案(d)

2、外公切线是指

(a)和两圆都祖切的直线(b)两切点间的距离

(c)两圆在公切线两旁时的公切线(d)两圆在公切线同旁时的公切线

直接运用外公切线的定义判断。答案:(d)

3、教材p141练习(略)

(六)小结(组织学生进行)

知识:两圆的公切线、外公切线、内公切线及公切线的长概念;

能力:归纳、概括能力和求外公切线长的能力;

思想:“转化”思想。

(七)作业:p151习题10,11。

幂函数的教案篇5

一、内容和内容解析;

1、内容:人教版八上第十四章一次函数14.22(2)一次函数的图像

2、内容解析:教材的地位和作用:本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

二、目标和目标解析

1、教学目标的确定

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

知识目标

(1)能用两点法画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

能力目标

(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

情感目标

(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

2、教学重点、难点

用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

三、教学问题诊断分析

1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

四、教学支持条件分析

恰当运用现代技术手段,采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

五、教学过程设计

(一)、设疑,导入新课(2分钟)

通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢? 一次函数的图象。(板书课题)

幂函数的教案5篇相关文章:

秋天的颜色中班语言教案5篇

碗的美术教案5篇

秋天的图画优秀教案5篇

幼儿测量的教案5篇

种子的萌发教案5篇

折花的教案模板5篇

小数的认识教案最新5篇

有趣的沙子科学教案5篇

小班的游戏教案优质5篇

小班认识11数字的教案5篇

幂函数的教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
69009